Axially Assembled, External Beveled These rings look exactly like their SH counterpart, only they have a 15° angle on the inner edge. This combines with a complimentary groove angle to eliminate endplay by wedging itself between the groove and the retained part. Free Diameter & Ring Measurements with Section B-B Shaft Diameter & **Groove Dimensions** Clearance Diameter Expanded Over Shaft Clearance Diameter & Gaging Diameter Released in Groove | RING | | SHAFT | | | GRO | OVE SIZ | F | | | | BING S | IZE & W | FIGHT | | | CLEARA | NCE DIA. | |--------------------|----------------|-----------------|--------------|-------|-----------|---------|-------|--------------|-------|--------------|---------|---------|-------|--------|--------------|--------------|--------------| | NO. | | DIAMETER | | DI | AMETER | | DTH | DEPTH | | REE | THICKNE | | | KNESS | WEIGHT | EX- | RE- | | | | | | | | | | | DIAN | METER | | | | ELED | PER | PANDED | LEASED | | | | | | | | | | | | | | | E | ND | 1000 | OVER | IN | | | | | | | | | | | | | | | | | PCS. | SHAFT | GROOVE | Ds | Ds | Ds | | | | | | | | | | | | | | | | | DEC | FRACT | mm | Dq | Tol. | W | Tol. | d | Df I | Tol. | T | Tol. | U | Tol. | lbs. | L1 | L2 | | VSH-100 | 1.000 | 1 | 25.4 | .930 | +.000 | .037 | 10 | .035 | .925 | +.005 | .042 | 10 | .034 | 15 | 3.6 | 1.41 | 1.38 | | VSH-102 | 1.023 | - | 26.0 | .951 | 003 .004* | .036 | | .036 | .946 | 010 | .042 | 1 | .033 | 1 | 3.9 | 1.43 | 1.40 | | VSH-106 | 1.062 | 1-1/16 | 27.0 | .992 | | .044 | | .035 | .982 | | .050 | 1 | .041 | 1 | 4.8 | 1.50 | 1.47 | | VSH-112 | 1.125 | 1-1/8 | 28.6 | 1.051 | | .044 | | .037 | 1.041 | | .050 |] | .041 |] | 5.1 | 1.55 | 1.52 | | VSH-119 | 1.188 | 1-3/16 | 30.2 | 1.108 | +.000 | .044 | | .040 | 1.098 | +.010 | .050 | ±.002 | .041 | | 5.6 | 1.61 | 1.57 | | VSH-125 | 1.250 | 1-1/4 | 31.7 | 1.166 | 004 | .043 | | .042 | 1.156 | 015 | .050 | | .040 | | 5.9 | 1.69 | 1.65 | | VSH-131 | 1.312 | 1-5/16 | 33.3 | 1.224 | .005* | .042 | | .044 | 1.214 | | .050 | | .039 | | 6.8 | 1.75 | 1.71 | | VSH-137 | 1.375 | 1 -3/8 | 34.9 | 1.282 | | .042 | | .046 | 1.272 | | .050 | | .039 | | 7.2 | 1.80 | 1.76 | | VSH-143 | 1.438 | 1-7/16 | 36.5 | 1.343 | | .042 | +.005 | .047 | 1.333 | | .050 | | .039 | ±.001 | 8.1 | 1.87 | 1.83 | | VSH-150 | 1.500 | 1-1/2 | 38.1 | 1.397 | | .041 | 000 | .051 | 1.387 | | .050 | | .038 | 1 | 9.0 | 1.99 | 1.95 | | VSH-157
VSH-162 | 1.562
1.625 | 1-9/16
1-5/8 | 39.7
41.3 | 1.459 | | .053 | | .051
.054 | 1.446 | | .062 | | .049 | 1 | 12.4
13.2 | 2.10 | 2.05 | | VSH-168 | 1.688 | 1-11/16 | 42.9 | 1.573 | | .052 | | .054 | 1.560 | | .062 | 1 | .049 | ł | 14.8 | 2.17 | 2.13 | | VSH-175 | 1.750 | 1-3/4 | 44.4 | 1.631 | +.000 | .052 | | .057 | 1.618 | +.013 | .062 | | .048 | ł | 15.3 | 2.24 | 2.26 | | VSH-177 | 1.772 | - 1-0/4 | 45.0 | 1.650 | 005 | .052 | | .061 | 1.637 | 020 | .062 | 1 | .048 | ł | 15.4 | 2.33 | 2.28 | | VSH-181 | 1.812 | 1-13/16 | 46.0 | 1.688 | .005* | .052 | | .062 | 1.675 | 020 | .062 | 1 | .048 | ł | 16.2 | 2.38 | 2.33 | | VSH-187 | 1.875 | 1-7/8 | 47.6 | 1.748 | .000 | .052 | | .063 | 1.735 | | .062 | | .048 | i | 17.3 | 2.44 | 2.39 | | VSH-196 | 1.969 | 1-31/32 | 50.0 | 1.832 | | .051 | | .068 | 1.819 | | .062 | 1 | .047 | i | 18.0 | 3.09 | 2.54 | | VSH-200 | 2.000 | 2 | 50.8 | 1.863 | | .051 | | .068 | 1.850 | | .062 | 1 | .047 | i | 19.0 | 3.10 | 2.57 | | VSH-206 | 2.062 | 2-1/16 | 52.4 | 1.921 | | .067 | | .070 | 1.906 | | .078 | 1 | .062 | | 25.0 | 3.22 | 2.68 | | VSH-212 | 2.125 | 2-1/8 | 54.0 | 1.979 | | .067 | | .073 | 1.964 | | .078 | 1 | .062 | 1 | 26.1 | 3.29 | 2.78 | | VSH-215 | 2.156 | 2-5/32 | 54.8 | 2.008 | | .067 | | .074 | 1.993 | | .078 | ±.003 | .062 |] | 26.3 | 3.40 | 2.81 | | VSH-225 | 2.250 | 2-1/4 | 57.1 | 2.096 | | .066 | | .077 | 2.081 | +.015 | .078 | | .061 | | 27.7 | 3.51 | 2.90 | | VSH-231 | 2.312 | 2-5/16 | 58.7 | 2.154 | | .065 | | .079 | 2.139 | 025 | .078 | | .060 | | 28.0 | 3.58 | 2.97 | | VSH-237 | 2.375 | 2-3/8 | 60.3 | 2.212 | | .065 | | .081 | 2.197 | | .078 | | .060 | ±.0015 | 29.2 | 3.50 | 3.06 | | VSH-243 | 2.438 | 2-7/16 | 61.9 | 2.270 | +.000 | .065 | +.007 | .084 | 2.255 | | .078 | | .060 | | 29.5 | 3.64 | 3.07 | | VSH-250 | 2.500 | 2-1/2 | 63.5 | 2.328 | 006 | .064 | 000 | .086 | 2.313 | | .078 | | .059 | | 29.7 | 3.17 | 3.09 | | VSH-255 | 2.559 | - 0.5/0 | 65.0 | 2.397 | .006* | .064 | | .081 | 2.377 | | .078 | | .059 | | 33.9 | 3.18 | 3.10 | | VSH-262 | 2.625 | 2-5/8 | 66.7 | 2.448 | | .064 | | .088 | 2.428 | | .078 | | .059 | | 35.0 | 3.30 | 3.22 | | VSH-268 | 2.688 | 2-11/16 | 68.3 | 2.505 | | .064 | | .091 | 2.485 | . 000 | .078 | | .059 | | 36.0 | 3.37 | 3.29 | | VSH-275
VSH-287 | 2.750
2.875 | 2-3/4
2-7/8 | 69.8
73.0 | 2.563 | | .079 | | .093 | 2.543 | +.020
030 | .093 | | .073 | - | 47.0
48.5 | 3.48
3.60 | 3.40
3.51 | | VSH-287
VSH-293 | 2.875 | 2-1/8 | 74.6 | 2.679 | | .078 | | .100 | 2.059 | 030 | .093 | | .072 | ±.002 | 50.0 | 3.60 | 3.51 | | VSH-293
VSH-300 | 3.000 | 3 | 76.2 | 2.795 | | .078 | | .100 | 2.717 | | .093 | | .072 | ±.002 | 52.0 | 3.60 | 3.58 | | VSH-306 | 3.062 | 3-1/16 | 77.8 | 2.795 | | .077 | | .102 | 2.832 | | .093 | | .071 | 1 | 47.0 | 3.74 | 3.64 | | V9H-300 | 3.002 | J-1/10 | //.ŏ | 2.002 | | .077 | | .105 | Z.ŏ3Z | | .093 | | .071 | | 47.0 | 3.74 | ა.04 | ^{***} FOR PLATED RINGS, ADD .002" TO THE LISTED MAXIMUM THICKNESS (T) AND BEVELED END THICKNESS (U) VALUES. * F.I.M. (FULL INDICATOR MOVEMENT)-MAXIMUM ALLOWABLE DEVIATION OF CONCENTRICITY BETWEEN GROOVE AND SHAFT. FOR HARDNESS SPECIFICATIONS, SEE END OF THIS SECTION. Exploded Groove Profile & Edge Margin Maximum bottom radii (R), .005 for ring sizes -100 thru -200; .010 for ring sizes -206 thru -1000 Alternate Lug Design Manufacturer's Option For Larger Sizes | RING | | WABLE | MAX | EDGE | END | | UG | | MUM | | IMUM | | OLE . | GAG- | | LOAD (lbs.) | |---------|-------|---------------|------------------------------------|------|-------------|------|-------|-------|-------|-------|-------|------|-------|--------|----------------------------------|------------------------------------| | NO. | | RNER
DII & | LOAD | MAR- | PLAY | HE | IGHT | SEC | TION | 2EC | CTION | DIAN | METER | ING | SUR. CURNE | R ABUTMENT | | | | MFERS | W/ R MAX
OR CH MAX
(IN LBS.) | GIN | TAKE-
UP | | | | | | | | | DIA. | RING
Safety
Factor
Of 4 | GROOVE
SAFETY
FACTOR
OF 2 | | | R max | Ch max | P'r | Υ | In. | Н | Tol. | S max | Tol. | S min | Tol. | R | Tol. | Gd Max | Pr | Pq | | VSH-100 | .057 | .034 | 1340 | .052 | .005 | .167 | | .116 | ±.005 | .065 | ±.005 | .078 | | 1.144 | 5024 | 1200 | | VSH-102 | .058 | .035 | 1340 | .054 | .005 | .168 | 1 | .118 | | .066 | | .078 | 1 | 1.170 | 5126 | 1300 | | VSH-106 | .060 | .036 | 1950 | .052 | .005 | .181 | 1 | .122 | | .069 | | .078 | 1 1 | 1.217 | 6293 | 1300 | | VSH-112 | .063 | .038 | 1950 | .055 | .005 | .182 | 1 | .128 | | .071 | | .078 | 1 | 1.286 | 6699 | 1450 | | VSH-119 | .064 | .0385 | 1950 | .060 | .005 | .198 | 1 | .132 | | .072 | | .078 | 1 | 1.351 | 7105 | 1650 | | VSH-125 | .068 | .041 | 1950 | .063 | .0055 | .183 |] | .140 | | .076 | | .078 |] | 1.424 | 7460 | 1850 | | VSH-131 | .068 | .041 | 1950 | .066 | .006 | .183 |] | .146 | | .0765 | | .078 |] | 1.490 | 7866 | 2000 | | VSH-137 | .072 | .043 | 1950 | .069 | .006 | .184 |] | .152 | | .082 | | .078 |] | 1.562 | 8222 | 2250 | | VSH-143 | .076 | .045 | 1950 | .070 | .006 | .184 | ±.004 | .160 | ±.006 | .086 | ±.006 | .078 | 1 | 1.636 | 8628 | 2450 | | VSH-150 | .079 | .047 | 1950 | .076 | .007 | .214 | 1 | .168 | | .091 | | .120 | 1 | 1.706 | 8932 | 2700 | | VSH-157 | .082 | .049 | 3000 | .076 | .007 | .255 |] | .172 | | .093 | | .125 |] | 1.778 | 11571 | 2900 | | VSH-162 | .087 | .052 | 3000 | .081 | .0075 | .235 | 1 | .180 | | .097 | | .125 | 1 | 1.849 | 12028 | 3100 | | VSH-168 | .090 | .054 | 3000 | .085 | .0075 | .235 | 1 | .184 | | .099 | | .125 |] | 1.912 | 12535 | 3400 | | VSH-175 | .091 | .054 | 3000 | .088 | .008 | .260 | ±.005 | .188 | | .101 | | .125 |] | 1.981 | 12992 | 3650 | | VSH-177 | .092 | .055 | 3000 | .090 | .008 | .237 | | .190 | | .102 | | .125 |] | 2.004 | 13144 | 3750 | | VSH-181 | .092 | .055 | 3000 | .093 | .008 | .238 |] | .192 | | .102 | | .125 | +.015 | 2.047 | 13449 | 3950 | | VSH-187 | .094 | .056 | 3000 | .094 | .0085 | .239 |] | .196 | | .104 | | .125 | 002 | 2.114 | 13906 | 4200 | | VSH-196 | .094 | .056 | 3000 | .102 | .009 | .245 |] | .200 | | .106 | | .125 |] | 2.209 | 14565 | 4700 | | VSH-200 | .096 | .057 | 3000 | .102 | .009 | .239 | 1 | .204 | | .108 | | .125 | 1 1 | 2.246 | 14819 | 4800 | | VSH-206 | .098 | .059 | 5000 | .105 | .0095 | .266 | | .208 | | .111 | | .125 | | 2.315 | 19234 | 5100 | | VSH-212 | .098 | .059 | 5000 | .109 | .010 | .280 |] | .212 | | .113 | | .125 |] | 2.386 | 19793 | 5450 | | VSH-215 | .097 | .058 | 5000 | .111 | .010 | .280 | 1 | .212 | | .113 | | .125 | 1 1 | 2.410 | 20097 | 5600 | | VSH-225 | .100 | .060 | 5000 | .115 | .010 | .280 |] | .220 | | .116 | | .125 |] | 2.513 | 21011 | 6100 | | VSH-231 | .100 | .060 | 5000 | .118 | .0105 | .280 |] | .222 | | .118 | | .125 |] | 2.577 | 21518 | 6300 | | VSH-237 | .100 | .060 | 5000 | .121 | .011 | .292 |] | .224 | | .119 | | .125 |] | 2.640 | 22127 | 6800 | | VSH-243 | .102 | .061 | 5000 | .126 | .011 | .268 |] | .228 | | .120 | | .125 |] | 2.706 | 22736 | 7100 | | VSH-250 | .104 | .062 | 5000 | .129 | .0115 | .292 | ±.005 | .232 | ±.007 | .122 | ±.007 | .125 |] | 2.772 | 23345 | 7500 | | VSH-255 | .108 | .065 | 5000 | .121 | .011 | .268 |] | .238 | | .125 | | .125 |] | 2.845 | 23853 | 7300 | | VSH-262 | .1095 | .066 | 5000 | .132 | .0115 | .292 |] | .242 | | .127 | | .125 |] | 2.910 | 24462 | 8200 | | VSH-268 | .1115 | .067 | 5000 | .136 | .012 | .292 |] | .246 | | .129 | | .125 |] | 2.975 | 25071 | 8600 | | VSH-275 | .112 | .067 | 7350 | .139 | .012 | .324 |] | .248 | | .131 | | .125 |] | 3.041 | 30552 | 9000 | | VSH-287 | .115 | .069 | 7350 | .147 | .013 | .324 | | .256 | | .133 | | .125 |] | 3.172 | 31973 | 9900 | | VSH-293 | .116 | .070 | 7350 | .150 | .0135 | .324 | | .260 | | .136 | | .125 |] | 3.239 | 32683 | 10300 | | VSH-300 | .117 | .070 | 7350 | .153 | .0135 | .264 |] | .264 | | .138 | | .125 |] | 3.306 | 33394 | 10700 | | VSH-306 | .107 | .064 | 7350 | .157 | .014 | .300 | | .300 | | .131 | | .125 |] | 3.347 | 34003 | 11200 | Î BASED ON HOUSINGS/SHAFTS MADE OF COLD ROLLED STEEL. FOR AN EXPLANATION OF FORMULAS USED TO DERIVE THRUST LOAD AND OTHER PERFORMANCE DATA, CONTACT THE ROTOR CLIP ENGINEERING DEPARTMENT. FOR HARDNESS SPECIFICATIONS, SEE END OF THIS SECTION. ## **Axially Assembled, External Beveled** These rings look exactly like their SH counterpart, only they have a 15° angle on the inner edge. This combines with a complimentary groove angle to eliminate endplay by wedging itself between the groove and the retained part. Free Diameter & Ring Measurements with Section B-B Shaft Diameter & Groove Dimensions Clearance Diameter Expanded Over Shaft Clearance Diameter & Gaging Diameter Released in Groove | RING | | SHAFT | | | G | ROOVE S | SIZE | | | | RING | SIZE & V | NFIGHT | | | CLEARA | CLEARANCE DIA. | | |----------|--------|-------------|----------|-------|-------|---------|-------|-------|--------------|-------|---------|----------|---------------------|--------|-------------------------------|--------------------------------|-------------------------------|--| | NO. | | DIAMETER | | DIAM | ETER | | DTH | DEPTH | FRE
Diami | | THICKNE | | THICK
Beve
En | LED | WEIGHT
PER
1000
PCS. | EX-
PANDED
OVER
SHAFT | RE-
LEASED
IN
GROOVE | | | | Ds DEC | Ds
Fract | Ds
mm | Da | Tol. | w | Tol. | d | Df | Tol. | T | Tol. | U | Tol. | lbs. | L1 | L2 | | | VSH-312 | 3.125 | 3-1/8 | 79.4 | 2.912 | 101. | .076 | 101. | .106 | 2.892 | 101. | .093 | 101. | .070 | 101. | 58.0 | 3.85 | 3.76 | | | VSH-315 | 3.156 | 3-5/32 | 80.2 | 2.940 | | .076 | +.007 | .108 | 2.920 | l | .093 | 1 | .070 | 1 | 59.0 | 3.88 | 3.78 | | | VSH-325 | 3.250 | 3-1/4 | 82.5 | 3.026 | | .076 | 000 | .112 | 3.006 | 1 | .093 | 1 | .070 | ±.002 | 62.0 | 3.93 | 3.83 | | | VSH-334 | 3.346 | 3-11/32 | 85.0 | 3.112 | | .075 | | .117 | 3.092 | 1 | .093 | 1 | .069 | 1 | 64.0 | 4.02 | 3.92 | | | VSH-343 | 3.438 | 3-7/16 | 87.3 | 3.199 | | .075 | 1 | .119 | 3.179 | 1 | .093 | 1 | .069 | 1 | 66.0 | 4.12 | 4.01 | | | VSH-350 | 3.500 | 3-1/2 | 88.9 | 3.257 | | .091 | | .121 | 3.237 | 1 | .109 | 1 | .084 | | 72.0 | 4.16 | 4.05 | | | VSH-354 | 3.543 | - | 90.0 | 3.297 | +.000 | .091 | 1 | .123 | 3.277 | 1 | .109 | 1 | .084 | 1 | 73.0 | 4.25 | 4.14 | | | VSH-362 | 3.625 | 3-5/8 | 92.1 | 3.372 | 006 | .090 | 1 | .126 | 3.352 | +.020 | .109 | 1 | .083 | 1 | 76.0 | 4.33 | 4.21 | | | VSH-368 | 3.688 | 3-11/16 | 93.7 | 3.430 | .006* | .090 | 1 | .129 | 3.410 | 030 | .109 | ±.003 | .083 | 1 | 80.0 | 4.39 | 4.27 | | | VSH-375 | 3.750 | 3-3/4 | 95.2 | 3.488 | | .089 |] | .131 | 3.468 |] | .109 |] | .082 |] | 83.0 | 4.52 | 4.40 | | | VSH-387 | 3.875 | 3-7/8 | 98.4 | 3.604 | | .089 |] | .135 | 3.584 | | .109 |] | .082 | | 88.0 | 4.62 | 4.49 | | | VSH-393 | 3.938 | 3-15/16 | 100.0 | 3.662 | | .088 | | .138 | 3.642 | | .109 |] | .081 | ±.0025 | 95.0 | 4.70 | 4.57 | | | VSH-400 | 4.000 | 4 | 101.6 | 3.720 | | .088 |] | .140 | 3.700 | | .109 |] | .081 | | 101.0 | 4.76 | 4.63 | | | VSH-425 | 4.250 | 4-1/4 | 108.0 | 4.009 | | .094 | | .120 | 3.989 | | .109 |] | .087 | | 112.0 | 4.98 | 4.87 | | | VSH-437 | 4.375 | 4-3/8 | 111.1 | 4.126 | | .094 | | .124 | 4.106 | | .109 |] | .087 | | 115.0 | 5.11 | 4.99 | | | VSH-450 | 4.500 | 4-1/2 | 114.3 | 4.243 | | .094 | | .128 | 4.223 | | .109 |] | .087 | | 132.0 | 5.37 | 5.25 | | | VSH-475 | 4.750 | 4-3/4 | 120.6 | 4.478 | | .092 | +.008 | .136 | 4.458 |] | .109 |] | .085 | | 113.0 | 5.62 | 5.49 | | | VSH-500 | 5.000 | 5 | 127.0 | 4.712 | | .091 | 000 | .144 | 4.692 | | .109 | | .084 | | 149.0 | 5.87 | 5.74 | | | VSH-525 | 5.250 | 5-1/4 | 133.3 | 4.947 | +.000 | .105 |] | .151 | 4.927 | | .125 | | .098 | | 190.0 | 6.20 | 6.05 | | | VSH-550 | 5.500 | 5-1/2 | 139.7 | 5.182 | 007 | .104 |] | .159 | 5.162 | +.020 | | ±.004 | .097 | | 201.0 | 6.45 | 6.30 | | | VSH-575 | 5.750 | 5-3/4 | 146.0 | 5.416 | .006* | .103 | | .167 | 5.396 | 040 | .125 |] | .096 | | 199.0 | 6.69 | 6.53 | | | VSH-600 | 6.000 | 6 | 152.4 | 5.651 | | .102 | | .174 | 5.631 | | .125 | | .095 | | 210.0 | 6.95 | 6.78 | | | VSH-625 | 6.250 | 6-1/4 | 158.7 | 5.886 | | .132 | | .182 | 5.866 | | .156 | | .124 | | 282.0 | 7.31 | 7.14 | | | VSH-650 | 6.500 | 6-1/2 | 165.1 | 6.120 | | .131 | | .190 | 6.100 | +.020 | |] | .123 | | 330.0 | 7.67 | 7.49 | | | VSH-675 | 6.750 | 6-3/4 | 171.4 | 6.355 | | .130 | | .197 | 6.335 | 050 | .156 |] | .122 | ±.003 | 356.0 | 8.06 | 7.87 | | | VSH-700 | 7.000 | 7 | 177.8 | 6.590 | +.000 | .129 | | .205 | 6.570 | | .156 |] | .121 | | 388.0 | 8.13 | 7.93 | | | VSH-750 | 7.500 | 7-1/2 | 190.5 | 7.059 | 008 | .158 | | .220 | 7.039 | | .187 | ±.005 | .149 | | 534.0 | 8.70 | 8.49 | | | VSH-800 | 8.000 | 8 | 203.2 | 7.528 | .006* | .157 | | .236 | 7.508 | | .187 |] | .148 | | 628.0 | 9.24 | 9.01 | | | VSH-850 | 8.500 | 8-1/2 | 215.9 | 7.997 | | .154 | | .251 | 7.977 | +.020 | |] | .145 | | 700.0 | 9.79 | 9.54 | | | VSH-900 | 9.000 | 9 | 228.6 | 8.465 | | .153 | | .267 | 8.445 | 060 | .187 | | .144 | | 757.0 | 10.60 | 10.34 | | | VSH-950 | 9.500 | 9-1/2 | 241.3 | 8.935 | | .150 | | .282 | 8.915 | | .187 | | .141 |] | 820.0 | 11.10 | 10.82 | | | VSH-1000 | 10.000 | 10 | 254.0 | 9.405 | | .148 | | .297 | 9.385 | | .187 | | .139 | | 964.0 | 11.61 | 11.32 | | ^{*} F.I.M. (FULL INDICATOR MOVEMENT)-MAXIMUM ALLOWABLE DEVIATION OF CONCENTRICITY BETWEEN GROOVE AND SHAFT. | THE RESTREE | THE INTERIOR OF THE PROPERTY O | | | | | | | | | | | |-------------|--|-------|-------------------|--|--|--|--|--|--|--|--| | RING TYPE | SIZE RANGE | SCALE | ROCKWELL HARDNESS | | | | | | | | | | VSH | All | С | 44-51 | | | | | | | | | ^{***}FOR PLATED RINGS ADD .002" TO THE LISTED MAXIMUM THICKNESS. MAXIMUM RING THICKNESS WILL BE A MINIMUM OF .0002" LESS THAN THE LISTED GROOVE WIDTH (W) MINIMUM. Exploded Groove Profile & Edge Margin Maximum bottom radii (R), .005 for ring sizes -100 thru -200; .010 for ring sizes -206 thru -1000 Asymmetrical Design Manufacturer's Option Alternate Lug Design Manufacturer's Option For Larger Sizes | RING | ALLO | WABLE | MAX. | EDGE | END- | - | UG | MAXII | MIIM | MINII | мим | l ur | DLE | GAG- | î TUDIIÇT | LD. (LBS.) | |--------------------|--------------|--------------|----------------|------|-------|------|-------|--------------|-------|-------|-------|--------------|-------|-----------------|--------------------|--------------------| | NO. | | NABLE | LOAD | MAR- | PLAY | | GHT | SECT | | SECT | | | IETER | ING | | R ABUTMENT | | 110. | | OII & | W/R MAX | GIN | TAKE- | | u | 0201 | | 020 | | | | DIA. | OGII. OOIIIIE | i viboriii zivi | | | CHAN | IFERS | OR CH MAX | | UP | | | | | | | | | | RING | GROOVE | | | | | (IN LBS.) | | | | | | | | | | | | SAFETY | SAFETY | | | | | | | | | | | | | | | | | FACTOR | FACTOR | | | | | | | | | | | | | | | | | 0F 4 | 0F 2 | Dunan | Ch may | (lhe) | Y | la la | Н | Tal | Coman | Tal | Ci | Tal | | Tal | Cd May | D ₁ | D- | | VSH-312 | .120 | .072 | (lbs.)
7350 | .159 | .014 | .324 | Tol. | .272 | Tol. | .141 | Tol. | .125 | Tol. | Gd Max
3.439 | Pr
34815 | Pg
11700 | | VSH-315 | .1205 | .072 | 7350 | .162 | .0145 | .324 | | .274 | | .143 | 1 | .125 | | 3.469 | 35119 | 11900 | | VSH-325 | .123 | .074 | 7350 | .168 | .015 | .300 | | .300 | | .145 | 1 | .125 | | 3.571 | 36134 | 12700 | | VSH-334 | .126 | .076 | 7350 | .175 | .0155 | .300 | | .300 | | .147 | 1 | .125 | | 3.669 | 37251 | 13600 | | VSH-343 | .129 | .077 | 7350 | .178 | .016 | .300 | | .300 | | .148 | 1 | .125 | | 3.767 | 38266 | 14300 | | VSH-350 | .122 | .073 | 10500 | .181 | .016 | .285 | | .285 | | .148 | 1 | .125 | | 3.821 | 45574 | 14800 | | VSH-354 | .123 | .074 | 10500 | .184 | .0165 | .310 | ±.005 | | ±.008 | .149 | ±.008 | .125 | | 3.866 | 46183 | 15200 | | VSH-362 | .127 | .076 | 10500 | .189 | .017 | .310 | 1 | .310 | | .153 | 1 | .125 | +.015 | 3.956 | 47299 | 16300 | | VSH-368 | .1295 | .078 | 10500 | .193 | .017 | .310 | | .310 | | .156 |] | .125 | 002 | 4.026 | 48010 | 16500 | | VSH-375 | .133 | .080 | 10500 | .196 | .0175 | .342 | | .342 | | .160 | | .125 | | 4.098 | 48822 | 17200 | | VSH-387 | .137 | .082 | 10500 | .202 | .018 | .342 | | .342 | | .163 |] | .125 | | 4.229 | 50446 | 18300 | | VSH-393 | .137 | .082 | 10500 | .207 | .0185 | .342 | | .342 | | .163 | 1 | .125 | | 4.290 | 51359 | 19000 | | VSH-400 | .135 | .081 | 10500 | .210 | .019 | .342 | | .342 | | .163 | | .125 | | 4.350 | 52171 | 19600 | | VSH-425 | .146 | .088 | 10500 | .180 | .016 | .342 | | .342 | | .176 | | .125 | | 4.620 | 55419 | 18000 | | VSH-437 | .146 | .088 | 10500 | .186 | .017 | .342 | | .342 | | .181 | | .125 | | 4.740 | 57043 | 19000 | | VSH-450 | .102 | .061 | 10500 | .192 | .017 | .405 | | .405 | | .185 | | .125 | | 4.920 | 58667 | 20200 | | VSH-475 | .115 | .069 | 10500 | .204 | .018 | .405 | | .405 | | .136 | | .125 | | 5.060 | 61915 | 22700 | | VSH-500 | .165 | .099 | 10500 | .216 | .019 | .405 | ±.008 | | ±.010 | | ±.010 | .156 | | 5.410 | 65163 | 25400 | | VSH-525
VSH-550 | .169
.175 | .101
.105 | 13500
13500 | .226 | .020 | .435 | | .435 | | .211 | - | .156
.156 | | 5.670
5.940 | 78460
82215 | 28000
30800 | | VSH-575 | .175 | .105 | 13500 | .238 | .021 | .435 | | .390
.435 | | .209 | - | .156 | | 6.210 | 85971 | 33800 | | VSH-600 | .143 | .086 | 13500 | .261 | .022 | .435 | | .435 | | .220 | 1 | .156 | | 6.380 | 89625 | 37000 | | VSH-625 | .148 | .089 | 21000 | .273 | .023 | .485 | | .485 | | .176 | | .156 | | 6.650 | 116522 | 40000 | | VSH-650 | .191 | .114 | 21000 | .285 | .025 | .485 | | .485 | | .236 | 1 | .156 | +.020 | 6.980 | 121191 | 43500 | | VSH-675 | .200 | .120 | 21000 | .295 | .026 | .515 | | .515 | | .246 | 1 | .187 | 005 | 7.260 | 125860 | 47000 | | VSH-700 | .208 | .125 | 21000 | .307 | .027 | .515 | | .515 | | .256 | 1 | .187 | | 7.520 | 130529 | 50500 | | VSH-750 | .220 | .132 | 30000 | .330 | .029 | .545 | ±.012 | .545 | ±.015 | | ±.015 | | | 8.060 | 167678 | 58000 | | VSH-800 | .235 | .141 | 30000 | .354 | .032 | .560 | | .560 | | .294 | 1 | .187 | | 8.590 | 178843 | 66500 | | VSH-850 | .250 | .150 | 30000 | .376 | .034 | .580 | | .580 | | .314 | 1 | .187 | | 9.130 | 190008 | 75000 | | VSH-900 | .267 | .160 | 30000 | .400 | .036 | .735 | | .609 | | .333 | 1 | .187 | | 9.670 | 201173 | 86000 | | VSH-950 | .281 | .168 | 30000 | .423 | .038 | .735 | | .642 | | .350 | 1 | .187 | | 10.200 | 212338 | 94500 | | VSH-1000 | .294 | .176 | 30000 | .445 | .040 | .735 | | .675 | | .367 | 1 | .187 | | 10.730 | 223503 | 105000 | Î BASED ON HOUSINGS/SHAFTS MADE OF COLD ROLLED STEEL. FOR AN EXPLANATION OF FORMULAS USED TO DERIVE THRUST LOAD AND OTHER PERFORMANCE DATA, CONTACT THE ROTOR CLIP ENGINEERING DEPARTMENT. HARDNESS RANGES: CARBON STEEL RINGS (SAE 1060-1090) | RING TYPE | SIZE RANGE | SCALE | ROCKWELL HARDNESS | |-----------|------------|-------|-------------------| | VSH | 100-102 | С | 47-53 | | | 106-343 | С | 47-52 | | | 350-700 | С | 44-51 | | | 725-1000 | С | 40-47 | HARDNESS RANGES: BERYLLIUM COPPER RINGS | RING TYPE | SIZE RANGE | SCALE | ROCKWELL HARDNESS | |-----------|------------|-------|-------------------| | VSH | 100-102 | 30N | 56.5-62 | | | 106+ | С | 37-43 |